Economics of Globalization

Sciences Po Saint-Germain-en-Laye

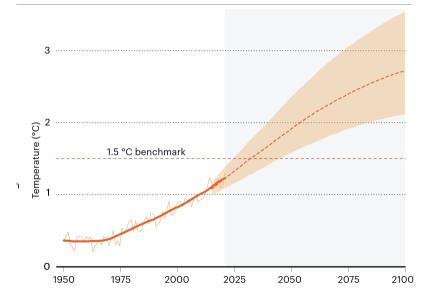
- What is the relationship between globalization and the environment?
- How does globalization affect the environment?

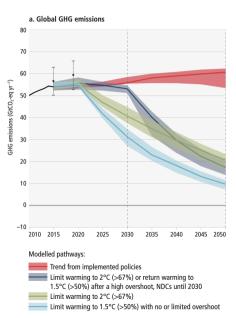
- What is the relationship between globalization and the environment?
- How does globalization affect the environment?
 - Emissions due to production, transport.
 - Import/Exports of pollution.

- What is the relationship between globalization and the environment?
- How does globalization affect the environment?
 - Emissions due to production, transport.
 - Import/Exports of pollution.
- What problems does globalisation raise for environmental policies?

- What is the relationship between globalization and the environment?
- How does globalization affect the environment?
 - Emissions due to production, transport.
 - Import/Exports of pollution.
- What problems does globalisation raise for environmental policies?
 - Regulatory competition.
 - \longrightarrow Collective action problem.

- What is the relationship between globalization and the environment?
- How does globalization affect the environment?
 - Emissions due to production, transport.
 - Import/Exports of pollution.
- What problems does globalisation raise for environmental policies?
 - Regulatory competition.
 - Collective action problem.
- How to transform globalization to answer the challenges posed by environmental change?


- The last century have seen a large increase in temperatures at the world level.


- The last century have seen a large increase in temperatures at the world level.
- This increase is driven by human activities that increased the concentration of greenhouse gas (GHG) in the atmosphere.

- The last century have seen a large increase in temperatures at the world level.
- This increase is driven by human activities that increased the concentration of greenhouse gas (GHG) in the atmosphere.
- The currently implemented policies are not sufficient to limit the increase of temperature below 2°C in 2050.

- The last century have seen a large increase in temperatures at the world level.
- This increase is driven by human activities that increased the concentration of greenhouse gas (GHG) in the atmosphere.
- The currently implemented policies are not sufficient to limit the increase of temperature below 2°C in 2050.
- Environmental damage beyond GHG emissions: biodiversity, deforestation, sea level rise, extreme events, etc. → both local and global.

- The last century have seen a large increase in temperatures at the world level.
- This increase is driven by human activities that increased the concentration of greenhouse gas (GHG) in the atmosphere.
- The currently implemented policies are not sufficient to limit the increase of temperature below 2°C in 2050.
- Environmental damage beyond GHG emissions: biodiversity, deforestation, sea level rise, extreme events, $etc. \longrightarrow$ both local and global.
- Direct costs on human life, life quality and economics.
 - Direct costs estimated to 1.3 trillion over the last decade.
 - Indirect costs: Estimations that 1°C of warming reduces GDP by 12%.
 - Conservative cost: does not account for effects on conflicts, mortality, and other nonmonetary effects.

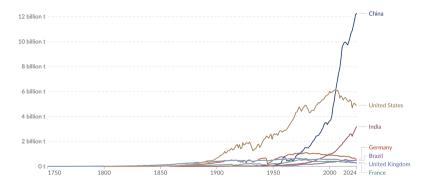
An important clarification

- Different scopes to measure emissions:

An important clarification

- Different scopes to measure emissions:
 - **Scope 1**: Direct emissions from production \longrightarrow the smokestack of a vehicle manufacturing plant

An important clarification

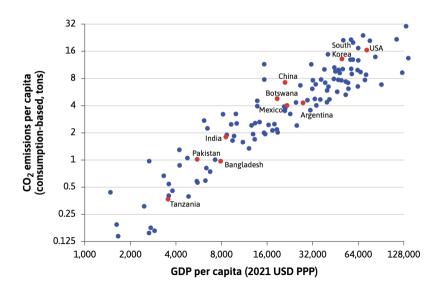

- Different scopes to measure emissions:
 - Scope 1: Direct emissions from production → the smokestack of a vehicle manufacturing plant
 - Scope 2: Direct emissions + emissions due to energy → add the emissions due to electricity generation.

An important clarification

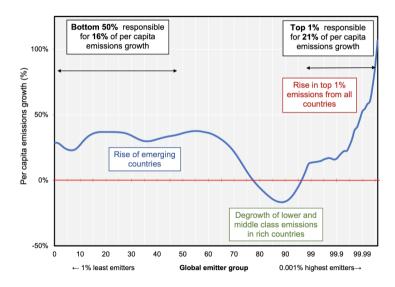
- Different scopes to measure emissions:
 - Scope 1: Direct emissions from production → the smokestack of a vehicle manufacturing plant
 - Scope 2: Direct emissions + emissions due to energy → add the emissions due to electricity generation.
 - Scope 3: Indirect emissions

 the pollution from the plant + from the plants supplying tires, engines to that plant + from the plants and mines supplying rubber, steel, etc. to the input plants, etc. + from the use of the product.

Fact 1: Most global emissions growth comes from developing countries.


- More developed countries have lower emission rates on average.
- Dirtiest countries have 20 times the emission intensity of the cleanest countries.
- Very recent evidence of flat emissions in China.

Fact 2: Most global emissions stock comes from developed countries.



Stock of global emissions

Fact 2: Most global emissions stock comes from developed countries.

Fact 3: Emissions inequalities

Fact 3: Emissions inequalities

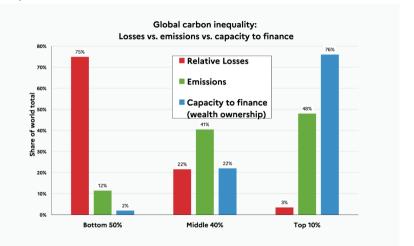
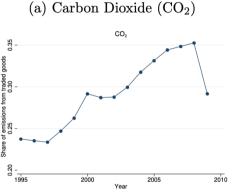
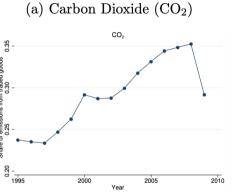
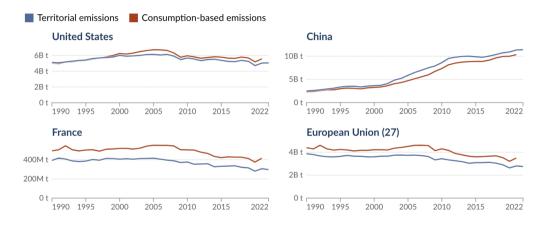



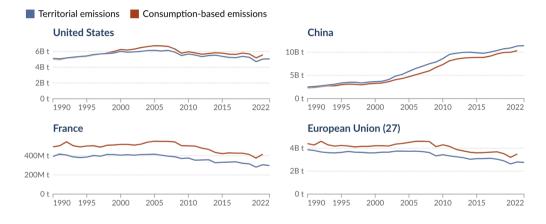
Figure A: Global climate inequality: relative losses, emissions and capacity to finance


Notes: Relative income losses due to climate change, vs. greenhouse gases emissions vs. wealth ownership. See Figure 29 for methodological details and how to read this graph.

Fact 4: International Trade accounts for a fourth to a third of global pollution emissions.

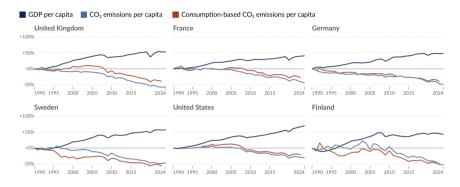
Share of Global Pollution Embodied in International Trade, by Year


Fact 4: International Trade accounts for a fourth to a third of global pollution emissions.

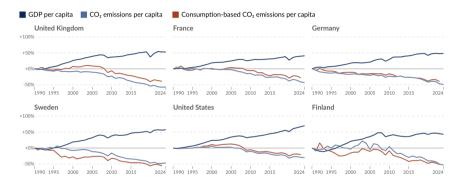

Share of Global Pollution Embodied in International Trade, by Year

Does it mean that 1/3 of emissions will disappear if trade stops?

Fact 5: Rich countries are increasingly outsourcing pollution.

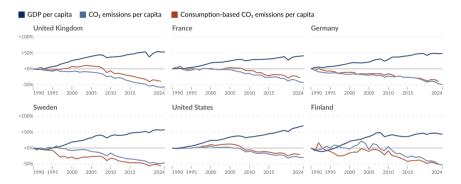


Fact 5: Rich countries are increasingly outsourcing pollution.



Consequence: French emissions rely a lot on foreign technologies. Decrease in French emissions from 2000 to 2014 driven at 58% by foreign countries, and 12% by China only.

Fact 5: ... but are decoupling emissions and growth



Fact 5: ... but are decoupling emissions and growth

How is it possible?

Fact 5: ... but are decoupling emissions and growth

How is it possible?

→ Offshoring; Efficiency (better technologies allow to use less energy to produce one \$ of GDP), Reallocation (switch from high-emissions – fossil fuels – to low-emissions sources of energy – renewables, nuclear energy).

Domestic policies

- What economic policies are necessary to limit climate change and environmental damage?

- What economic policies are necessary to limit climate change and environmental damage?
- CO2 emissions are a negative externality: emiters do not bear the cost they impose on society, so they emit too much.
- Pigouvian tax

- What economic policies are necessary to limit climate change and environmental damage?
- CO2 emissions are a negative externality: emiters do not bear the cost they impose on society, so they emit too much.
- Pigouvian tax \longrightarrow carbon tax equal to the social cost of emissions. Details

- What economic policies are necessary to limit climate change and environmental damage?
- CO2 emissions are a negative externality: emiters do not bear the cost they impose on society, so they emit too much.
- Pigouvian tax → carbon tax equal to the social cost of emissions.
 - Pros: Integrate the social cost into behavior, generate tax revenues to fund environmental policies or do redistribution.
 - Limits: leakage effects, can be regressive (eg Yellow Vests), how to find the right social carbon price (between 100\$ and 1000\$)?

- What economic policies are necessary to limit climate change and environmental damage?
- CO2 emissions are a negative externality: emiters do not bear the cost they impose on society, so they emit too much.
- Pigouvian tax → carbon tax equal to the social cost of emissions.
 - Pros: Integrate the social cost into behavior, generate tax revenues to fund environmental policies or do redistribution.
 - Limits: leakage effects, can be regressive (eg Yellow Vests), how to find the right social carbon price (between 100\$ and 1000\$)?
- Alternatives: regulatory standards and bans, industrial policies to foster innovation, investment in green infrastructure and public goods, etc.

Domestic policies

- Carbon pricing:

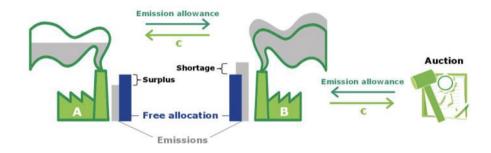
- Carbon pricing:
 - Carbon taxes

Domestic policies

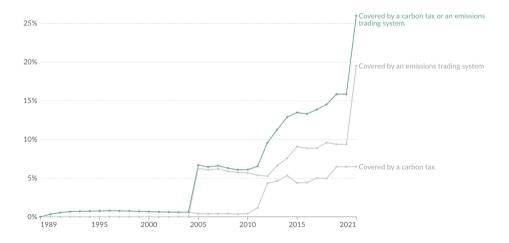
- Carbon pricing:
 - Carbon taxes
 - Cap-and-trade policies such as the ETS.

Domestic policies

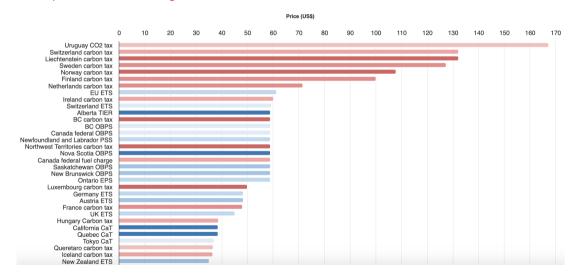
- Carbon pricing:
 - Carbon taxes
 - Cap-and-trade policies such as the ETS.
- Evaluation of carbon tax find positive effect on the reduction of emissions (between 5% and 20% depending on the tax)


Emissions Trading Schemes

- ETS are cap and trade systems designed to limit the total amount of GHG that can be emitted.
- To emit GHG, firms need permit that they can trade among each other.


Emissions Trading Schemes

- ETS are cap and trade systems designed to limit the total amount of GHG that can be emitted.
- To emit GHG, firms need permit that they can trade among each other.
 - The total number of permits is fixed so that the government can control the total number of emissions.
 - Given that firms vary in their production technologies, how will the total amount of required abatement be divided among them?
 - The abatement should be done by the firms for which this is least costly because this saves scarce resources that can be used elsewhere.
 - Works for *in-scope* industries *e.g.* 45% of the EU emissions are within the EU-ETS, 80% for the Californian ETS, 14% at the World level.


Emissions Trading Schemes More details

Domestic policies

Domestic policies: Carbon Pricing Dashboard

Collective action

- Why is it so hard to make countries coordinate at the world level?

Collective action

- Why is it so hard to make countries coordinate at the world level?

Talk of a global carbon pricing scheme grows louder ahead of COP30

Brazil wants to use the presidency to push for an international framework

Collective action

- Why is it so hard to make countries coordinate at the world level?

'Additional promises mean nothing': The awkward flaw in the world's climate talks

World leaders have vowed to fight rising temperatures for years. Many of those pledges fade when the summits end

Collective action

- Why is it so hard to make countries coordinate at the world level?

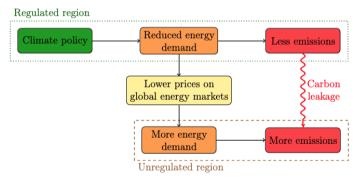
Collective action

- Why is it so hard to make countries coordinate at the world level?
 - Pollution is a global externality: you do not bear the cost of your emissions.
 - You gain if you free ride → collective action problem.

		US	
		Restrict	BAU
China	Restrict	GOOD	BEST
	BAU	WORST	BAD

Leakage effects

- Leakage: When a coalition of countries regulate pollution emission, this might increase emissions in non-coalition countries.
- Leakage effects reduce the efficacy of domestic policies: carbon emissions embodied in the exports of countries that did not ratify the Kyoto protocol increased by 8%.


Leakage effects: the competition channel

Regulated region Loss of Short term market shares Relatively less Higher production Less emissions competitive firms costs Firms leave Long term the region Carbon . leakage Short term Increase in market shares Relatively more competitive firms Long term Firms relocate to region Unregulated region

Figure 2: A schematic view of the competition channel

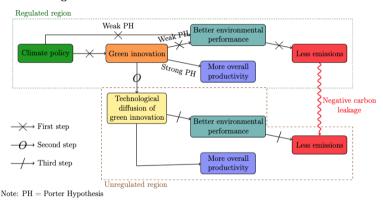
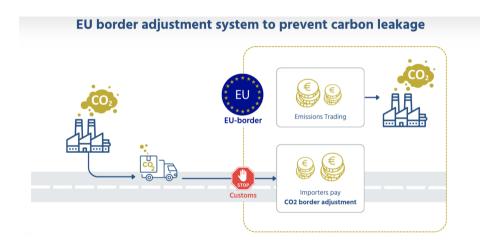

Leakage effects: the energy channel

Figure 3: A schematic view of the energy channel

Leakage effects: the innovation channel

Figure 4: A schematic view of the innovation channel



Porter hypothesis: strict environmental regulations can induce efficiency and encourage innovations that help improve commercial competitiveness.

Addressing Leakage effects.

- Addressing leakage effects requires aligning incentives.

- Addressing leakage effects requires aligning incentives.
- EU-Carbon border-adjustment mechanisms (CBAM) in place from October 2023 to avoid leakage effects.
- Main objective: ensure the carbon price of imports is equivalent to the carbon price of domestic production.
- Applies on carbon-intensive goods and goods at risk of leakage effects.
 - Cement, iron and steel, aluminium, fertilizers, electricity and hydrogen
- Capture 50% of the emissions in the European Trading Scheme when fully phased-in.

Addressing Leakage effects.

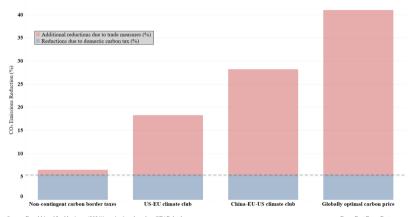
- Carbon Border taxes might have limited effects (Farrokhi and Lashkaripour, 2023).

- Carbon Border taxes might have limited effects (Farrokhi and Lashkaripour, 2023).
 - Incentivize carbon price increase in foreign countries only if they are very exposed.

- Carbon Border taxes might have limited effects (Farrokhi and Lashkaripour, 2023).
 - Incentivize carbon price increase in foreign countries only if they are very exposed.
 - They do not affect non-traded goods that are responsible of a significant fraction of carbon emissions.

- Carbon Border taxes might have limited effects (Farrokhi and Lashkaripour, 2023).
 - Incentivize carbon price increase in foreign countries only if they are very exposed.
 - They do not affect non-traded goods that are responsible of a significant fraction of carbon emissions.
 - 2/3 of global carbon emissions come from industries with a low trade-to-GDP ratio.

- Carbon Border taxes might have limited effects (Farrokhi and Lashkaripour, 2023).
 - Incentivize carbon price increase in foreign countries only if they are very exposed.
 - They do not affect non-traded goods that are responsible of a significant fraction of carbon emissions.
 - 2/3 of global carbon emissions come from industries with a low trade-to-GDP ratio.
- Climate Clubs proposed by William Nordhaus can be more efficient.


- Carbon Border taxes might have limited effects (Farrokhi and Lashkaripour, 2023).
 - Incentivize carbon price increase in foreign countries only if they are very exposed.
 - They do not affect non-traded goods that are responsible of a significant fraction of carbon emissions.
 - 2/3 of global carbon emissions come from industries with a low trade-to-GDP ratio.
- Climate Clubs proposed by William Nordhaus can be more efficient.
 - Within the club, countries set up high carbon taxes.
 - Desincentivizes emissions within the club.

- Carbon Border taxes might have limited effects (Farrokhi and Lashkaripour, 2023).
 - Incentivize carbon price increase in foreign countries only if they are very exposed.
 - They do not affect non-traded goods that are responsible of a significant fraction of carbon emissions.
 - 2/3 of global carbon emissions come from industries with a low trade-to-GDP ratio.
- Climate Clubs proposed by William Nordhaus can be more efficient.
 - Within the club, countries set up high carbon taxes.
 - Desincentivizes emissions within the club.
 - They tax trade with countries that are not members of the club.
 - Incentivizes joining the club.

- Carbon Border taxes might have limited effects (Farrokhi and Lashkaripour, 2023).
 - Incentivize carbon price increase in foreign countries only if they are very exposed.
 - They do not affect non-traded goods that are responsible of a significant fraction of carbon emissions.
 - 2/3 of global carbon emissions come from industries with a low trade-to-GDP ratio.
- Climate Clubs proposed by William Nordhaus can be more efficient.
 - Within the club, countries set up high carbon taxes.
 - Desincentivizes emissions within the club.
 - They tax trade with countries that are not members of the club.
 - Incentivizes joining the club.
 - Problem: Need to put many big countries in the club to make it work.

Addressing Leakage effects.

Projected CO₂ Reduction under Trade-Based Climate Policies

Source: Farrokhi and Lashkaripour (2024)'s projections based on GTAP database.

EconoFact EconoFact.org

Note: The blue portion represents the effect of a domestic carbon tax set at a level that only considers the damage caused by emissions to the local economy. Non-contingent carbon border taxes are tariffs levied on imported goods based on the greenhouse gas emissions from production. The climate club projections assume contingent trade penalties that elicit global participation. The final column shows emissions reduction achievable under globally optimal carbon pricing.

Openness and environmental policy

- Openness might constrain environmental policy: trade policy limits the use of many instruments (tariff, quotas, subsidies).
- Trade liberalization might be compensated by weak environmental policies or specific product standards that can be seen as a subsidy to domestic producers.
- Risk of lobbying increases.
 - Closed economy: regulations increase costs which are partly passed-through consumers.
 - Open-economy: prices are less sensible. Producers tend to bear the costs and will be more resistant to tighter environmental regulation.
- Regulatory competition can also go through the investment policy (cf. ISDS discussed in previous classes).

Using trade policy

- Trade policy can be used to restrict products that cause environmental damages.
 - Chinese restrictions on the export of rare earths to limit pollution.
 - Generated price increase: U.S. Canada, the EU and Japan filled a complaint at WTO.
 - WTO ruled against China with the motive that other instruments were available and that export quotas were "designed to achieve industrial policy goals rather than conservation".
 - → Environmental policies might be confounded by industrial policy.

Using trade policy

- Defenders of trade agreements state that it can be used for the diffusion of environmental norms.
- The EU pushes for this vision of trade agreements, *e.g.*, for the EU-Mercosur agreement. But is it enough, or is it greenwashing?
 - Introduce a dispute settlement mechanism to enforce workers' right and environmental provisions.
- Environmental provisions in PTA seem to work by reducing dirty exports and increasing green exports.
- Questions remain unanswered:
 - Is it working?
 - Does it spill-over to domestic production?
 - Are there leakage effects?

Using trade policy

Number of RTAs and environmental provisions on average (by year of signature)

(Click to select) Average environmental provisions per RTA signed in that year RTAs signed in that year

Source: OECD work on Regional Trade Agreements and the environment: Policy Perspectives (2023)

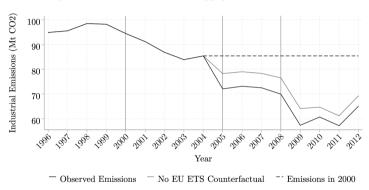
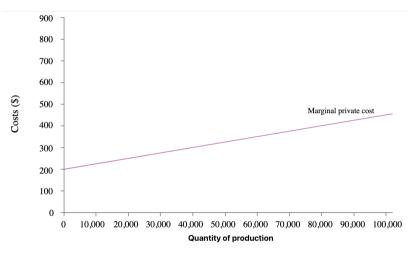
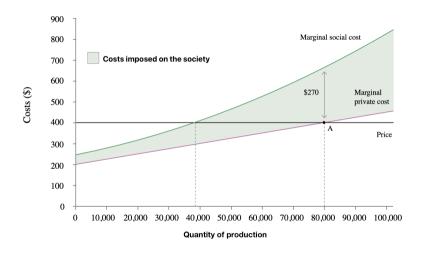


Figure 4: The Effect of the EU ETS on Aggregate Emissions Reductions

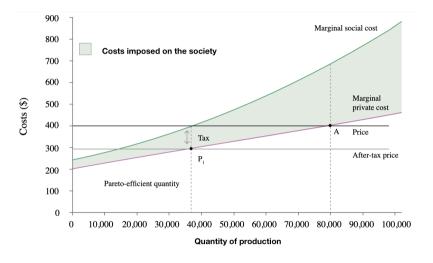

Notes: The black line presents the aggregate time series for industrial emissions in France, measured in millions of tonnes of CO₂. The dark gray line represents counterfactual emissions in the absence of the EU ETS, using our difference-in-differences estimates and assuming that 75% of industrial emissions are regulated. The dashed black line represents the level of emissions in 2000 as a benchmark.Source: Authors calculations based on French microdata and Eurostat data.

EU ETS Leakage effects.

- Competition channel: no evidence
- Energy channel: no leakage through this channel because the EU demand for fossil fuel has not yet significantly decreased (because of fuel intensive activities are out of scope).
- Innovation channel: limited impact on clean energy innovation.
- Current estimations are based on the first phases of the implementation of EU ETS (low price, free allocations). More important effects are expected with higher carbon prices.


Back

Pigouvian Taxes


In a competitive environment, producers are price-takers and production is set at the point where the price is equal to the marginal private cost of production.

Pigouvian Taxes

Pigouvian Taxes

